RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2009 Volume 43, Issue 1, Pages 37–54 (Mi faa2943)

This article is cited in 3 papers

Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel

B. Krötz

Max-Planck-Institut für Mathematik

Abstract: In this paper, we define a horospherical transform for a semisimple symmetric space $Y$. A natural double fibration is used to assign a more geometrical space $\Xi$ of horospheres to $Y$. The horospherical transform relates certain integrable analytic functions on $Y$ to analytic functions on $\Xi$ by fiber integration. We determine the kernel of the horospherical transform and establish that the transform is injective on functions belonging to the most continuous spectrum of $Y$.

Keywords: semisimple symmetric space, horospherical transform, Fourier transform, Plancherel theorem.

UDC: 517.988.28

Received: 14.05.2007

DOI: 10.4213/faa2943


 English version:
Functional Analysis and Its Applications, 2009, 43:1, 30–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026