RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 3, Pages 63–70 (Mi faa2913)

Nonmatricial Version of the Arveson–Wittstock Extension Principle, and Its Generalization

A. Ya. Helemskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider the algebra $\mathcal{B}=\mathcal{B}(H)$ of bounded operators in a Hilbert space $H$, $\mathcal{B}$-bimodules, and morphisms of these bimodules into the algebra $\mathcal{B}(L\otimes H)$, where $L$ is a Hilbert space. We study the problem of extension of a morphism defined on a sub-$\mathcal{B}$-bimodule $Y\subset Z$ to $Z$. This problem is solved for Ruan bimodules.

Keywords: Ruan bimodule, bimodule tensor product, q-norm, q-space, completely bounded operator, Arveson–Wittstock theorem.

UDC: 517.98+512.664.1

Received: 19.02.2007

DOI: 10.4213/faa2913


 English version:
Functional Analysis and Its Applications, 2008, 42:3, 213–219

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026