RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2007 Volume 41, Issue 1, Pages 66–89 (Mi faa2853)

This article is cited in 11 papers

Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order $2n$

V. A. Tkachenko

Ben-Gurion University of the Negev

Abstract: We prove an explicit formula for spectral expansions in $L^2(\mathbb{R})$ generated by self-adjoint differential operators
$$ (-1)^n\frac{d^{2n}}{dx^{2n}}+\sum_{j=0}^{n-1}\frac{d^{j}}{dx^{j}}\, p_j(x)\frac{d^{j}}{dx^{j}}\,,\qquad p_j(x+\pi)=p_j(x),\quad x\in\mathbb{R}. $$


Keywords: differential operator, eigenfunction expansion, spectral matrix.

UDC: 517.983.35

Received: 15.05.2006

DOI: 10.4213/faa2853


 English version:
Functional Analysis and Its Applications, 2007, 41:1, 54–72

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026