RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2002 Volume 36, Issue 4, Pages 74–77 (Mi faa222)

This article is cited in 20 papers

Brief communications

A Sturm–Liouville Inverse Spectral Problem with Boundary Conditions Depending on the Spectral Parameter

C. Van der Meea, V. N. Pyvovarchykb

a Università di Cagliari
b Odessa State Academy of Building and Architecture

Abstract: We consider a boundary value problem generated by the Sturm-Liouville equation on a finite interval. Both the equation and the boundary conditions depend quadratically on the spectral parameter. This boundary value problem occurs in the theory of small vibrations of a damped string. The inverse problem, i.e., the problem of recovering the equation and the boundary conditions from the given spectrum, is solved.

Keywords: Sturm–Liouville problem, damped string, spectral parameter-dependent boundary conditions, eigenvalues, asymptotics.

UDC: 517.43+517.9

Received: 10.12.2001

DOI: 10.4213/faa222


 English version:
Functional Analysis and Its Applications, 2002, 36:4, 315–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026