RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2003 Volume 37, Issue 2, Pages 92–94 (Mi faa153)

Brief communications

Preduals of von Neumann Algebras

A. I. Shtern

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Proofs of two assertions are sketched. 1) If the Banach space of a von Neumann algebra $\mathfrak A$ is the third dual of some Banach space, then the space $\mathfrak A$ is isometrically isomorphic to the second dual of some von Neumann algebra $A$ and the von Neumann algebra $A$ is uniquely determined by its enveloping von Neumann algebra (up to von Neumann algebra isomorphism) and is the unique second predual of $\mathfrak A$ (up to isometric isomorphism of Banach spaces). 2) An infinite-dimensional von Neumann algebra cannot have preduals of all orders.

Keywords: von Neumann algebra, Banach space, dual, predual.

UDC: 517.98

Received: 18.11.2002

DOI: 10.4213/faa153


 English version:
Functional Analysis and Its Applications, 2003, 37:2, 157–159

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026