RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2004 Volume 38, Issue 4, Pages 82–86 (Mi faa129)

Brief communications

Regular Mittag-Leffler Kernels and Volterra Operators

G. M. Gubreev

South Ukrainian State K. D. Ushynsky Pedagogical University

Abstract: We give the definition of an abstract Mittag-Leffler kernel $\mathcal{E}_\rho$ ranging in a separable Hilbert space $\mathfrak{H}$. In the simplest case, $\mathcal{E}_\rho(z)$ can be expressed via the Mittag-Leffler function $E_\rho(z,\mu)$. The kernel $\mathcal{E}_\rho$ is said to be $c$-regular if it generates an integral transform of Fourier–Dzhrbashyan type and $d$-regular if its range contains an unconditional basis of $\mathfrak{H}$. We give a complete description of $d$- and $c$-regular kernels, which permits us to answer a question posed by M. Krein. An application to the problem on the similarity of a rank one perturbation of a fractional power of a Volterra operator to a normal operator is considered.

Keywords: Mittag-Leffler kernel, Mittag-Leffler function, Fourier–Dzhrbashyan transform, rank one perturbation, Volterra operator, fractional power.

UDC: 517.43+513.88

Received: 20.02.2003

DOI: 10.4213/faa129


 English version:
Functional Analysis and Its Applications, 2004, 38:4, 305–308

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026