RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2019 Volume 10, Number 4, Pages 14–23 (Mi emj344)

Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces

V. I. Burenkovab, T. V. Tararykovacb

a V.A. Steklov Institute of Mathematics, Russian Academy of Sciences, 42 Vavilov St, 117966 Moscow, Russia
b S.M. Nikol'skii Institute of Mathematics, RUDN University, 6 Miklukho Maklay St, 117198 Moscow, Russia
c Cardiff School of Mathematics, Cardiff University, Senghennydd Road, CF24 4AG Cardiff, United Kingdom

Abstract: Necessary and sufficient conditions on an open set $\Omega\subset \mathbb{R}^n$ are obtained ensuring that for $l,m\in\mathbb{N}_0$, $m < l$ the embedding $\mathring{W}_\infty^l(\Omega)\subset W_\infty^m(\Omega)$ is compact, where $W_\infty^m(\Omega)$ is the Sobolev space and $\mathring{W}_\infty^l(\Omega)$ is the closure in $W_\infty^l(\Omega)$ of the space of all infinitely continuously differentiable functions on $\Omega$ with supports compact in $\Omega$.

Keywords and phrases: Sobolev spaces, pre-compact sets, embeddings of Sobolev spaces.

MSC: 46B25, 46B50, 47B38

Received: 01.09.2019

Language: English

DOI: 10.32523/2077-9879-2019-10-4-14-23



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026