RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2013 Volume 4, Number 2, Pages 57–63 (Mi emj123)

On the boundary behaviour of functions in the Djrbashyan classes $U_\alpha$ and $A_\alpha$

R. V. Dallakyan

State Engineering University of Armenia, Teryan 105, building 12, Yerevan, Armenia

Abstract: Nevanlinna factorization theorem was essentially extended in a series of papers by M. M. Djrbashyan for classes $A_\alpha$ and $U_\alpha$ introduced by him, see [2], [3]. In this paper we pay particular attention to non vanishing functions $f\in A_\alpha(-1<\alpha<0)$ and show that for any $\theta$ except at most a set of zero $(1+\alpha)$-capacity we have $|\ln|f(z)||=o((1-|z|)^{1+\alpha})$ as $z\to e^{i\theta}$.

Keywords and phrases: weighted Djrbashyan classes, boundary behavior of meromorphic functions.

MSC: 30E25

Received: 25.10.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026