RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2000 Volume 1, Number 1, Pages 16–27 (Mi dvmg74)

Criterion of square summability with geometric weight for Jacobi expansions

D. B. Karp

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: In this paper we prove that $\sum_{k=0}^{\infty}|f_k|^2\theta^k<\infty$, where $\theta>1$ and $f_k$ is the k-th Fourier coefficient of a function $f\in{L_1(-1,1;(1-x)^{\lambda}(1+x)^{\mu})}$ in orthonormal Jacobi polynomials, iff $f$ can be analytically continued to the ellipse $E_{\theta}=\{z:~|z-1|+|z+1|<\theta^{\frac{1}{2}}+ \theta^{-\frac{1}{2}}\}$ and its analytic continuation belongs to the Szegö space $AL_2(\partial{E_{\theta}})$.

UDC: 517.538, 517.587

MSC: Primary 33C45; Secondary 42C05

Received: 11.05.2000



© Steklov Math. Inst. of RAS, 2026