RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2016 Volume 16, Number 2, Pages 181–185 (Mi dvmg332)

On the rank of a finite set of theta functions

M. D. Monina

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences

Abstract: In the work for the theta function
$$ \theta(z)=\theta(z;q)=\sum\limits_{n=-\infty}^{\infty}e^{2izn}q^{n^2} $$
identity
\begin{gather*} \theta(z_1+w)\dots\theta(z_{k-1}+w)\theta(z_1+\dots+z_{k-1}-w)=\sum\limits_{i=1}^{s}\varphi_i(z_1,\dots,z_{k-1})\psi_i(w) \\ (\forall z_1,\dots, z_{k-1}, w \in \mathbb{C}) \end{gather*}
with some clearly indicates theta functions $\psi_i$ of one variable and functions $\varphi_i$ of $k-1$ variables is proved.

Key words: theta function, elliptic function, Weierstrass sigma-function.

UDC: 517.965+517.547.582

MSC: 33E05

Received: 10.10.2016



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026