RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2003 Volume 4, Number 2, Pages 153–161 (Mi dvmg155)

The analytic properties of the Mellin transform of the second power of the “short” sum from the Riemann zeta-function approximate equation

L. V. Marchenko

Far Eastern State Transport University

Abstract: The approximate functional equation for $\left|\zeta\left(\dfrac{1}{2}+it\right)\right|^{2}$ ($t\gg 1$) is a sum of two sums and remainder. The first sum, called a “short” sum, contains $O(t^{2\varepsilon})$ terms, and the second sum contains $O(t^{2(1-\varepsilon)})$ terms ($0<\varepsilon<\frac12$). In this paper, we study analytic properties of the Mellin transform of the second power of the “short” sum absolute value and compare them with the corresponding properties of the Mellin transform of $\left|\zeta\left(\dfrac{1}{2}+it\right)\right|^{4}$.

UDC: 511.331

MSC: Primary 11M06; Secondary 11F66

Received: 23.07.2003



© Steklov Math. Inst. of RAS, 2026