RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1992 Volume 4, Issue 2, Pages 45–51 (Mi dm729)

Finite rings with a large number of zero divisors

A. N. Alekseichuk, V. P. Elizarov


Abstract: If $R$ is an associative ring with $n>1$ left-hand zero divisors, then $|R|\leqslant n^2$. We sharpen this estimate for rings that are nonlocal from the left. We describe nonlocal rings with identity, for which an improved estimate can be obtained, and also rings with the condition $|R|=(n-k)(n-l)$, where $k=1,2$ and $l=0,1$.

UDC: 519.49

Received: 22.04.1991


 English version:
Discrete Mathematics and Applications, 1993, 3:1, 51–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026