RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1998 Volume 10, Issue 1, Pages 28–45 (Mi dm417)

This article is cited in 1 paper

Transitivity-preserving operators on relations

L. A. Sholomov


Abstract: Let $\mathcal T=\mathcal T(A)$ be the class of all transitive relations on a finite set $A$. We say that an operator $r=F(r_1,\ldots, r_n)$ on the set of relations preserves transitivity if
$$ r_1,\ldots,r_n\in\mathcal T\quad \Rightarrow\quad r\in\mathcal T. $$
Let us introduce operators $\tau_n^{(u)}(r_1,\ldots,r_n)$, $u=0,1$, $n\geq 0$, by setting $\tau_0^{(0)}=\emptyset$, $\tau_0^{(1)}=A^2$,
$$ \tau_n^{(u)}=r_1\cap(\overline{(r_1^{-1})}\cup \tau_{n-1}^{(u)}(r_2,\ldots,r_n)), \qquad n\geq 1. $$
Any operator derived from $\tau_n^{(u)}$ by replacing some of $r_i$, $1\leq i\leq n,$ with $r_i^{-1}$ is called a $\tau$-operator. It is shown that an operator $F$ representable by means of set-theoretic operations and inversion of relations preserves transitivity if and only if it is representable as an intersection of $\tau$-operators.

UDC: 519.816

Received: 05.01.1995

DOI: 10.4213/dm417


 English version:
Discrete Mathematics and Applications, 1998, 8:2, 183–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026