RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2007 Volume 19, Issue 2, Pages 94–100 (Mi dm24)

On representation of $k$-valued logic functions by a sum of products of subfunctions

V. I. Panteleev, N. A. Peryazev


Abstract: The set of variables of a $k$-valued logic function $f(x_1,\dots,x_n)$ is partitioned into $t$ parts, $t>1$, and a polynomial representation of the function $f$ is considered where the terms are products of all possible subfunctions corresponding to the partitioning. We analyse conditions under which an arbitrary function admits a representation in such a polynomial form.

UDC: 519.7

Received: 30.01.2006

DOI: 10.4213/dm24


 English version:
Discrete Mathematics and Applications, 2007, 17:3, 279–285

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026