RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2003 Volume 15, Issue 4, Pages 141–147 (Mi dm223)

This article is cited in 5 papers

On the number and structure of sum-free sets in a segment of positive integers

K. G. Omel'yanov, A. A. Sapozhenko


Abstract: A set $A$ of integers is called sum-free if $a+b\notin A$ for any $a,b\in A$. For any real numbers $q\le p$ we denote by $[q,p]$ the set of real numbers $x$ such that $q\le x\le p$. Let $S(t,n)$ stand for the family of all sum-free subsets $A\subseteq[t,n]$, and $s(t,n)=|S(t,n)|$.
We prove that
\begin{equation*} s(t,n)=O(2^{n/2}) \end{equation*}
for $t\ge n^{3/4}\log n$, where $\log t=\log_2t$.
This research was supported by the Russian Foundation for Basic Research, grant 01–01–00266.

UDC: 519.6

Received: 09.09.2003

DOI: 10.4213/dm223


 English version:
Discrete Mathematics and Applications, 2003, 13:6, 637–643

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026