RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2025 Volume 37, Issue 2, Pages 137–156 (Mi dm1865)

Large deviations for random recurrent sequences with cooling

M. A. Khodiakova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: In the paper, we consider a model of random recurrent sequences with cooling. Let $\boldsymbol{\tau} = \{\tau_i\,|\, \tau_i \in \mathbb{N}\}_{i=1}^\infty$ be a deterministic bounded sequence of cooling durations, $k(n) = \min \{j \colon \tau_1 + \dotsb + \tau_{j} \geqslant n\}$ be the cooling number at the $n$-th step. Let $\xi_i$, $i\geqslant 1$, be independent identically distributed non-lattice random variables. We define a recurrent sequence with cooling by a random equation $Y_n = A_n Y_{n-1} + B_n$, $n\geqslant 1$, where $A_n = \exp \left(\xi_{k(n)}\right)$ and the random variables $B_n$ satisfy some moment assumptions.

Keywords: associated random walk, random recurrent sequences, large deviations.

UDC: 519.218.22

Received: 20.11.2024

DOI: 10.4213/dm1865



© Steklov Math. Inst. of RAS, 2026