RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2023 Volume 35, Issue 4, Pages 132–145 (Mi dm1761)

This article is cited in 1 paper

On one characteristic of a conditional distribution of configuration graph

I. A. Cheplyukovaab

a Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk
b Karelian Research Centre of the Russian Academy of Sciences

Abstract: We consider configuration graphs with $N$ vertices. The vertex degrees are independent identically distributed random variables and for any vertex of the graph the distribution of its degree $\eta$ satisfies the following condition:
$$ \mathbf{P}\{\eta=k\}\sim \frac{d}{k^{g}\ln^h k},\quad k\to\infty, $$
where $d>0$, $h\geqslant 0$, $2< g<3$. We obtain the limit distributions of the maximal degree of vertices in the configuration graph as $N,n\to\infty$ and $n/N^{(3g-4)/(2g-2)}\to\infty$ under the conditions that the sum of vertex degrees is $n$.

Keywords: configuration graph, vertex degree, limit distribution.

UDC: 519.179.4

Received: 17.01.2023

DOI: 10.4213/dm1761



© Steklov Math. Inst. of RAS, 2026