RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2022 Volume 34, Issue 4, Pages 84–98 (Mi dm1739)

This article is cited in 7 papers

Limit joint distribution of the statistics of «Monobit test», «Frequency Test within a Block» and «Binary Matrix Rank Test»

M. P. Savelov

Lomonosov Moscow State University

Abstract: In the case when the tested sequence consists of independent random variables having a Bernoulli distribution with the parameter $p = \frac12$ the limit joint distribution of the statistics $T_1, T_2, T_3$ of the following three tests of the NIST package is obtained: «Monobit Test», «Frequency Test within a Block» and «Binary Matrix Rank Test». Necessary and sufficient conditions for asymptotic uncorrelatedness and/or asymptotic independence of these statistics are obtained. It is proved that the covariance matrix $C = \| C_{ij}\|$ of the limit distribution of the vector $(T_1, T_2, T_3)$ satisfies the relations $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} \ge 0$. The limit behavior of the vector $(T_1, T_2, T_3)$ is described for a wide class of values $p \ne \frac12$.

Keywords: joint distributions of statistics, NIST package, goodness-of-fit tests, «Monobit Test», «Frequency Test within a Block», «Binary Matrix Rank Test», asymptotically uncorrelated statistics, asymptotically independent statistics.

UDC: 519.248

Received: 14.06.2022

DOI: 10.4213/dm1739


 English version:
Discrete Mathematics and Applications, 2025, 35:4, 249–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026