RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2020 Volume 32, Issue 3, Pages 68–75 (Mi dm1601)

This article is cited in 2 papers

Minimal contact circuits for characteristic functions of spheres

N. P. Red'kin

Lomonosov Moscow State University

Abstract: We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, we mean the Boolean function $\varphi^{(n)}_{\tilde\sigma}(x_1,\ldots,x_n)$ which is equal to 1 on those and only those tuples of values that differ from the tuple $\tilde\sigma$ only in one digit. It is shown that the number $3n-2$ of contacts is necessary and sufficient for implementation of $\varphi^{(n)}_{\tilde\sigma}(\tilde x)$ by a contact circuit.

Keywords: Boolean function, contact circuit, minimal circuit.

UDC: 519.714.7

Received: 28.11.2019

DOI: 10.4213/dm1601


 English version:
Discrete Mathematics and Applications, 2021, 31:6, 403–408

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026