This article is cited in
7 papers
On the accuracy of approximation in the Poisson limit theorem
D. N. Karymov
Abstract:
In this paper, we find non-uniform bounds in the Poisson theorem.
Let
$I_1,\ldots,I_n$ be indicators of independent random events.
We set
$p_k=\mathsf P\{I_k=1\}=1-\mathsf P\{I_k=0\}$,
$0\leq p_k\leq1$,
$k=1,\ldots,n$. Let
$$
B(x)=\mathsf P\biggl\{\sum_{k=1}^nI_k\leq x\biggr\}.
$$
Let
$b_k$ be the jump of the distribution function
$B(x)$ at the point
$k$.
We also set
$$
P_1=\frac1n\sum_{k=1}^np_k,
\qquad
P_2=\frac1n\sum_{k=1}^np_k^2.
$$
Let
$$
\pi_k=\frac{\lambda^k}{k!}e^{-\lambda},
\qquad
k=0,1,2,\ldots,
$$
be the jumps of the Poisson distribution function with parameter
$\lambda\geq0$,
and let
$$
\Pi_\lambda(x)=\sum_{k\leq x}\pi_k
$$
be the corresponding distribution function.
An example of the results obtained in the paper is formulated as follows.
For
$\lambda=nP_1$ and
$k\geq2+\lambda$,
$$
|b_k-\pi_k|\leq\frac{nP_2}2\left(1+\frac{\lambda^2}{(k-2)^2}\right)
e^{-\lambda}\left(\frac{\lambda e}{k-2}\right)^{k-2},
$$
and for
$k>1+\lambda e$
$$
|B(k)-\Pi_\lambda(k)|\leq\frac{nP_2}2\left(1+\frac{\lambda^2}{(k-1)^2}\right)
\frac{k-1}{k-1-\lambda e}e^{-\lambda}\left(\frac{\lambda e}{k-1}\right)^{k-1}.
$$
UDC:
519.2 Received: 13.04.2004
DOI:
10.4213/dm160