RUS
ENG
Full version
JOURNALS
// Diskretnaya Matematika
// Archive
Diskr. Mat.,
2020
Volume 32,
Issue 1,
Pages
110–114
(Mi dm1520)
This article is cited in
1
paper
Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem
M. A. Cherepnev
Lomonosov Moscow State University
Abstract:
We construct a probabilistic polynomial algorithm that solves the integer factorization problem using an oracle solving the Diffie–Hellman problem.
Keywords:
integer factorization complexity, complexity upper bounds, Diffie–Hellman problem.
UDC:
519.719.2
Received:
03.05.2018
Revised:
14.02.2020
DOI:
10.4213/dm1520
Fulltext:
PDF file (396 kB)
References
Cited by
English version:
Discrete Mathematics and Applications, 2021,
31
:1,
1–4
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026