RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2020 Volume 32, Issue 1, Pages 110–114 (Mi dm1520)

This article is cited in 1 paper

Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem

M. A. Cherepnev

Lomonosov Moscow State University

Abstract: We construct a probabilistic polynomial algorithm that solves the integer factorization problem using an oracle solving the Diffie–Hellman problem.

Keywords: integer factorization complexity, complexity upper bounds, Diffie–Hellman problem.

UDC: 519.719.2

Received: 03.05.2018
Revised: 14.02.2020

DOI: 10.4213/dm1520


 English version:
Discrete Mathematics and Applications, 2021, 31:1, 1–4

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026