RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2018 Volume 30, Issue 2, Pages 73–98 (Mi dm1484)

This article is cited in 7 papers

Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions

K. N. Pankov

Moscow Technical University of Communications and Informatics

Abstract: We refine local limit theorems for the distribution of a part of the weight vector of subfunctions and for the distribution of a part of the vector of spectral coefficients of linear combinations of coordinate functions of a random binary mapping. These theorems are used to derive improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions.

Keywords: random binary mapping, local limit theorem, weights of subfunctions, spectral coefficients, $(n,m,k)$-stable functions, correlation-immune functions.

UDC: 519.212.2+519.214

Received: 15.11.2018
Revised: 12.04.2018

DOI: 10.4213/dm1484


 English version:
Discrete Mathematics and Applications, 2019, 29:3, 195–213

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026