RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2018 Volume 30, Issue 1, Pages 77–94 (Mi dm1445)

This article is cited in 5 papers

On the asymptotics of degree structure of configuration graphs with bounded number of edges

Yu. L. Pavlov, I. A. Cheplyukova

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk

Abstract: We consider configuration graphs with $N$ vertices. The degrees of vertices are independent identically distributed random variables having the power-law distribution with positive parameter $\tau$. We study properties of random graphs such that the sum of vertex degrees does not exceed $n$ and the parameter $\tau$ is a random variable uniformly distributed on the interval $[a,b], 0<a<b<\infty$. We find limit distributions of the number $\mu_r$ of vertices with degree $r$ for various types of variation of $N,n$ and $r$.

Keywords: configuration graph, vertex degree, limit distribution.

UDC: 519.212.2+519.172.4

Received: 04.07.2017
Revised: 07.11.2017

DOI: 10.4213/dm1445


 English version:
Discrete Mathematics and Applications, 2019, 29:4, 219–232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026