RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2014 Volume 26, Issue 4, Pages 91–99 (Mi dm1307)

This article is cited in 3 papers

Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group

V. G. Sargsyan

M. V. Lomonosov Moscow State University

Abstract: A subset $A$ of elements of a group $G$ is $(k,l)$-sum-free if $A$ does not contains solutions of the equation $x_1 + \ldots + x_k=y_1 + \ldots + y_l$. We have obtained asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group.

Keywords: sum-free set, characteristic function, group, progression, coset.

UDC: 519.115+519.113.8

Received: 20.03.2014

DOI: 10.4213/dm1307


 English version:
Discrete Mathematics and Applications, 2015, 25:2, 93–99

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026