RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2025 Volume 525, Pages 47–51 (Mi danma711)

MATHEMATICS

Single point penalization for symmetric Levy processes

T. Abildaevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Saint Petersburg, Russian Federation
b Saint Petersburg State University

Abstract: Weconsider a one-dimensional symmetric Levy process $\xi(t)$, $t\geq0$, that has local time, which we denote by $L(t,x)$, and construct the operator $\mathcal A+\mu\delta(x-a)$, $\mu>0$, where $\mathcal A$ is the generator of $\xi(t)$, and and $\delta(x-a)$ is the Dirac delta function at $a\in\mathbb R$. We show that the constructed operator is the generator of $\{U_{t\geq0}\}$, $C_0$-semigroup on $L_2(\mathbb R)$, which is given by
$$ (U_tf)(x)=\mathbf E f(x-\xi(t))e^{\mu L(t,x-a)}, \quad f\in L_2(\mathbb R)\cap C_b(\mathbb R), $$
and prove the Feynman–Kac formula for the delta function-type potentials. Furthermore, we construct a family of penalized distributions $\{\mathbf Q^\mu_{T,x}\}_{T\geq0}$ of form
$$ \mathbf Q^\mu_{T,x}=\frac{e^{\mu L(T,x-a)}} {\mathbf E e^{\mu L(T,x-a)}} \mathbf P_{T,x}, $$
where $\mathbf P_{T,x}$ is the measure of the process $\xi(t)$, $t\leq T$. We show that this family weakly converges to a Feller process as $T\to\infty$, study the Feynman–Kac semigroup generated by this Feller process and prove a limit theorem for the distribution of $\xi(T)$ under $\mathbf Q^\mu_{T,x}$.

Keywords: stochastic processes, Levy processes, local time, Feynman–Kac formula, Feynman–Kac semigroup, penalization.

UDC: 519.214.6

Presented: I. A. Ibragimov
Received: 24.07.2025
Revised: 19.08.2025
Accepted: 19.08.2025

DOI: 10.7868/S3034504925050068



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026