RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2025 Volume 523, Pages 71–74 (Mi danma650)

MATHEMATICS

On the sizes of $k$-subgraphs of the binomial random graph

Yu. N. Yarovikov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia

Abstract: Consider $\mathcal{E}(G, k)$ – the set of all sizes (numbers of edges) of induced subgraphs of size $k$ in a given graph $G$ with $n$ vertices. For the binomial random graph $G = G(n, p)$, we proved that, for each $\alpha> 0$ and $\varepsilon$ small enough, the set $\mathcal{E}(G, k)$ with high probability contains a large segment for all $k$ such that $(\ln n)^{1+\alpha}<k<\varepsilon n$. We also found the asymptotic length of this segment.

Keywords: binomial random graph, sizes of induced subgraphs of the random graph.

UDC: 517.54

Presented: V. V. Kozlov
Received: 14.02.2025
Revised: 06.04.2025
Accepted: 21.04.2025

DOI: 10.31857/S2686954325030128


 English version:
Doklady Mathematics, 2025, 111:3, 199–201

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026