RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2025 Volume 521, Pages 5–10 (Mi danma613)

This article is cited in 1 paper

MATHEMATICS

On the Zaremba problem for inhomogeneous $p$-Laplace equation with drift

Yu. A. Alkhutova, M. D. Surnachevb, A. G. Chechkinacd

a Vladimir State University
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
d Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa

Abstract: A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz domain is proved for the inhomogeneous $p$-Laplace equation with drift.

Keywords: Zaremba problem, Meyers estimates, $p$-capacity, imbedding theorems, higher integrability, critical indicator.

UDC: 517.954+517.982

Presented: V. V. Kozlov
Received: 25.12.2024
Revised: 31.01.2025
Accepted: 31.01.2025

DOI: 10.31857/S2686954325010016


 English version:
Doklady Mathematics, 2025, 111:1, 1–5

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026