RUS
ENG
Full version
JOURNALS
// Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
// Archive
Dokl. RAN. Math. Inf. Proc. Upr.,
2025
Volume 521,
Pages
5–10
(Mi danma613)
This article is cited in
1
paper
MATHEMATICS
On the Zaremba problem for inhomogeneous
$p$
-Laplace equation with drift
Yu. A. Alkhutov
a
,
M. D. Surnachev
b
,
A. G. Chechkina
cd
a
Vladimir State University
b
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
c
Lomonosov Moscow State University
d
Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
Abstract:
A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz domain is proved for the inhomogeneous
$p$
-Laplace equation with drift.
Keywords:
Zaremba problem, Meyers estimates,
$p$
-capacity, imbedding theorems, higher integrability, critical indicator.
UDC:
517.954
+
517.982
Presented:
V. V. Kozlov
Received: 25.12.2024
Revised: 31.01.2025
Accepted: 31.01.2025
DOI:
10.31857/S2686954325010016
Cited by
English version:
Doklady Mathematics, 2025,
111
:1,
1–5
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026