RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 520, Number 1, Pages 29–34 (Mi danma573)

MATHEMATICS

Tunnel clustering method

F. T. Aleskerovab, A. L. Myachinab, V. I. Yakubaab

a National Research University Higher School of Economics, Moscow, Russia
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia

Abstract: We propose a novel method for rapid pattern analysis of high-dimensional numerical data, termed tunnel clustering. The main advantages of the method are its relatively low computational complexity, endogenous determination of cluster composition and number, and a high degree of interpretability of final results. We present descriptions of three different variations: one with fixed hyperparameters, an adaptive version, and a combined approach. Three fundamental properties of tunnel clustering are examined. Practical applications are demonstrated on both synthetic datasets containing 100. 000 objects and on classical benchmark datasets.

Keywords: cluster, clustering, cluster analysis, tunnel clustering, transition degree.

UDC: 004.622

Presented: D. A. Novikov
Received: 05.04.2024
Revised: 23.07.2024
Accepted: 30.10.2024

DOI: 10.31857/S2686954324060052


 English version:
Doklady Mathematics, 2024, 110:3, 474–479

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026