RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 520, Number 1, Pages 19–23 (Mi danma571)

MATHEMATICS

Lattice Boltzmann model for nonlinear anisotropic diffusion with applications to image processing

O. V. Ilyin

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia

Abstract: It is shown that the multiple nonconstant relaxation time lattice Boltzmann equation for five discrete velocities is equivalent in the diffusion limit to a nonlinear anisotropic diffusion equation. The proposed model is applied to speckle and Gaussian noise removal problem.

Keywords: lattice Boltzmann equations, nonlinear anisotropic diffusion, Perona–Malik equations.

UDC: 519.633

Presented: A. A. Shananin
Received: 15.05.2024
Revised: 12.10.2024
Accepted: 30.10.2024

DOI: 10.31857/S2686954324060033


 English version:
Doklady Mathematics, 2024, 110:3, 464–468

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026