RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 519, Pages 57–64 (Mi danma566)

MATHEMATICS

Modal logics of almost sure validities and zero-one laws in Horn classes

V. V. Slyusarev

Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Abstract: In this paper we develop a method to study Horn classes of Kripke frames from a probabilistic perspective. We consider the uniform distribution on the set of all $n$-point Kripke frames. A formula is almost surely valid in a Horn class $\mathcal{F}$ if the probability that it is valid in the $\mathcal{F}$-closure of a random $n$-point frame tends to $1$ as $n\to\infty$. Such formulas constitute a normal modal logic. We show that for pseudotransitive and pseudoeuclidean closures this logic equals $\mathrm{S}5$, and the zero-one law holds.

Keywords: modal logic, asymptotic probabilities, zero-one laws, Horn sentences, pseudotransitive relations.

UDC: 510.643

Presented: L. D. Beklemishev
Received: 30.06.2024
Revised: 24.08.2024
Accepted: 19.09.2024

DOI: 10.31857/S2686954324050115


 English version:
Doklady Mathematics, 2024, 110:2, 442–449

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026