RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 516, Pages 87–92 (Mi danma518)

MATHEMATICS

On the Boyarsky–Meyers estimate for the gradient of the solution to the Dirichlet problem for a second-order linear elliptic equation with drift: The case of critical Sobolev exponent

Yu. A. Alkhutova, A. G. Chechkinabc

a Vladimir State University, Vladimir, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Ufa Federal Research Centre of the Russian Academy of Sciences

Abstract: Increased integrability of the gradient of the solution to the homogeneous Dirichlet problem for the Poisson equation with lower terms in a bounded Lipschitz domain is established. The unique solvability of this problem is also proved.

Keywords: elliptic equation, lower coefficients, Dirichlet problem, Meyers estimate, existence and uniqueness of solution.

UDC: 517.954 + 517.982

Presented: V. V. Kozlov
Received: 20.02.2024
Revised: 25.03.2024
Accepted: 25.03.2024

DOI: 10.31857/S2686954324020149


 English version:
Doklady Mathematics, 2024, 109:2, 170–174

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026