RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 516, Pages 75–78 (Mi danma515)

MATHEMATICS

On an extremal problem for compactly supported positive definite functions

A. D. Manovab

a Saint Petersburg State University, Saint Petersburg, Russia
b Donetsk State University, Donetsk, Russia

Abstract: An extremal problem for positive definite functions on $\mathbb{R}^n$ with a fixed support and a fixed value at the origin (the class $\mathfrak{F}_r(\mathbb{R}^n))$ is considered. It is required to find the least upper bound for a special form functional over $\mathfrak{F}_r(\mathbb{R}^n))$. This problem is a generalization of the Turán problem for functions with support in a ball. A general solution to this problem for $n\ne2$ is obtained. As a consequence, new sharp inequalities are obtained for derivatives of entire functions of exponential spherical type.

Keywords: positive definite functions, extremal problems, Fourier transform, entire functions of exponential spherical type.

UDC: 517.5+519.213

Presented: S. V. Kislyakov
Received: 01.04.2024
Revised: 30.04.2024
Accepted: 27.05.2024

DOI: 10.31857/S2686954324020118


 English version:
Doklady Mathematics, 2024, 109:2, 161–163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026