RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 516, Pages 21–25 (Mi danma508)

MATHEMATICS

Induced forests and trees in Erdős–Rényi random graph

M. B. Akhmejanovaa, V. S. Kozhevnikovb

a King Abdullah University of Science and Technology, Kaust, KSA
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region

Abstract: We prove that the size of the maximum induced forest (of bounded and unbounded degree) in the binomial random graph $G(n, p)$ for $C_\varepsilon/n<p<1-\varepsilon$ with an arbitrary fixed $\varepsilon>0$ is concentrated in an interval of size $o(1/p)$. We also show 2-point concentration for the size of the maximum induced forest (and tree) of bounded degree in $G(n,p)$ for $p=\operatorname{const}$.

Keywords: random graph, Erdős–Rényi model, induced subgraph, tree, forest.

UDC: 519.175.4

Presented: V. V. Kozlov
Received: 10.09.2023
Revised: 25.02.2024
Accepted: 27.02.2024

DOI: 10.31857/S2686954324020041


 English version:
Doklady Mathematics, 2024, 516:2, 117–120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026