RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 516, Pages 9–14 (Mi danma506)

This article is cited in 1 paper

MATHEMATICS

Exact estimates of functions in Sobolev spaces with uniform norm

D. D. Kazimirov, I. A. Sheipak

Lomonosov Moscow State University, Moscow, Russian Federation

Abstract: For functions from the Sobolev space $\overset\circ{W}{}^n_\infty[0;1]$ and an arbitrary point $a\in(0;1)$, the best estimates are obtained in the inequality $|f(a)|\leq A_{n,0,\infty}(a)\cdot \|f^{(n)}\|_{L_\infty[0;1]}$. The connection of these estimates with the best approximations of splines of a special type by polynomials in $L_1[0;1]$ and with the Peano kernel is established. Exact constants of the embedding of the space $\overset\circ{W}{}^n_\infty[0;1]$ in $L_\infty[0;1]$ are found.

Keywords: estimates of derivatives, Sobolev spaces, embedding theorems, approximation by polynomials, Peano kernel.

UDC: 517.984, 517.518.82

Presented: B. S. Kashin
Received: 21.11.2023
Revised: 11.01.2024
Accepted: 09.02.2024

DOI: 10.31857/S2686954324020022


 English version:
Doklady Mathematics, 2024, 109:2, 107–111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026