RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 515, Pages 100–104 (Mi danma499)

This article is cited in 5 papers

MATHEMATICS

A note on Borsuk’s problem in Minkowski spaces

A. M. Raigorodskiiabcd, A. A. Sagdeevae

a Moscow Institute of Physics and Technology, Moscow, Russia
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Ulan-Ude, Russia
e Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest

Abstract: In 1993, Kahn and Kalai famously constructed a sequence of finite sets in $d$-dimensional Euclidean spaces that cannot be partitioned into less than (1.203 $\dots$ + $o$(1))${}^{\sqrt{d}}$ parts of smaller diameter. Their method works not only for the Euclidean, but for all $l_p$-spaces as well. In this short note, we observe that the larger the value of $p$, the stronger this construction becomes.

Keywords: Borsuk problem, Minkowski space, $l_p$-norm.

UDC: 004.9

Presented: A. L. Semenov
Received: 25.07.2023
Revised: 15.01.2024
Accepted: 29.01.2024

DOI: 10.31857/S2686954324010151


 English version:
Doklady Mathematics, 2024, 109:1, 80–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026