RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 515, Pages 40–43 (Mi danma490)

MATHEMATICS

Ramond and Neveu–Schwarz algebras and narrow Lie superalgebras

D. V. Millionshchikova, F. I. Pokrovskyb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia

Abstract: Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part $R^+$ of the Ramond algebra, while the second one contains the positive part $NS^+$ of the Neveu–Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.

Keywords: Lie superalgebra, positive grading, narrow algebras, central extension, Ramond algebra, Neveu–Schwarz algebra.

UDC: 512.554.33

Presented: S. P. Novikov
Received: 11.11.2023
Revised: 28.11.2023
Accepted: 12.12.2023

DOI: 10.31857/S2686954324010064


 English version:
Doklady Mathematics, 2024, 109:1, 30–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026