RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 514, Number 1, Pages 112–117 (Mi danma441)

MATHEMATICS

Numerical-statistical investigation of superexponential growth of the mean particle flux with multiplication in a homogeneous random medium

G. A. Mikhailovab, G. Z. Lotovaab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian
b Novosibirsk State University, Novosibirsk, Russian

Abstract: The new correlative-grid approximation of a homogeneous random field is introduced for the effective numerically-analytical investigation of the superexponential growth of the mean particles flux with multiplication in a random medium. A complexity of particle trajectory realization is not dependent on the correlation scale. The test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flux estimates. For the correlative-grid approximation the possibility of Gaussian asymptotics of the mean particles multiplication rate when the correlation scale decreases is justified.

Keywords: numerical statistical simulation, particles flux, superexponential asymptotics, random medium, the Voronoi mosaic, grid approximation.

UDC: 519.676

Received: 14.04.2023
Revised: 18.09.2023
Accepted: 03.11.2023

DOI: 10.31857/S2686954323600210


 English version:
Doklady Mathematics, 2023, 108:3, 519–523

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026