RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 514, Number 1, Pages 79–81 (Mi danma436)

MATHEMATICS

Operator group generated by a one-dimensional Dirac system

A. M. Savchuk, I. V. Sadovnichaya

Lomonosov Moscow State University

Abstract: In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space $\mathbb{H}=(L_2[0,\pi])^2$. The potential is assumed to be summable. It is proved that this group is well-defined in the space $\mathbb{H}$ and in the Sobolev spaces $\mathbb{H}^\theta_U$, $\theta>0$, with fractional index of smoothness $\theta$ and under boundary conditions $U$. Similar results are proved in the spaces $(L_\mu[0,\pi])^2$, $\mu\in(1,\infty)$. In addition we obtain estimates for the growth of the group as $t\to\infty$.

Keywords: Dirac operator, summable potential, operator group.

UDC: 517.984.52

Presented: B. S. Kashin
Received: 26.06.2023
Revised: 25.10.2023
Accepted: 01.11.2023

DOI: 10.31857/S2686954323600568


 English version:
Doklady Mathematics, 2023, 108:3, 490–492

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026