RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 514, Number 1, Pages 59–64 (Mi danma432)

This article is cited in 7 papers

MATHEMATICS

Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse collection

E. V. Vinnikovab, A. A. Davydovab, D. V. Tunitskyc

a Lomonosov Moscow State University, Moscow, Russian Federation
b NUST MISIS, Moscow, Russian Federation
c V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation

Abstract: On a two-dimensional sphere, a distributed renewable resource is considered, the dynamics of which is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource, carried out by constant or periodic impulse harvesting. It is shown that after choosing an admissible exploitation strategy, the dynamics of the resource tend to the limiting dynamics corresponding to this strategy, and that there is an admissible harvesting strategy that maximizes the time averaged harvesting of the resource.

Keywords: Kolmogorov–Petrovsky–Piskunov–Fisher model, parabolic semilinear equation, weak solution, stabilization, optimal control.

UDC: 517.956.4+517.956.8+517.955

Presented: A. L. Semenov
Received: 30.05.2023
Revised: 23.10.2023
Accepted: 03.11.2023

DOI: 10.31857/S2686954323600453


 English version:
Doklady Mathematics, 2023, 108:3, 472–476

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026