RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 513, Pages 76–87 (Mi danma419)

This article is cited in 3 papers

MATHEMATICS

On the canonical Ramsey theorem of Erdös and Rado and Ramsey ultrafilters

N. L. Poliakov

HSE University, Moscow, Russia

Abstract: We give a characterizations of Ramsey ultrafilters on $\omega$ in terms of functions $f\colon\omega^n\to\omega$ and their ultrafilter extensions. To do this, we prove that for any partition $\mathcal{P}$ of $[\omega]^n$ there is a finite partition $\mathcal{Q}$ of $[\omega]^{2n}$ such that any set $X\subseteq\omega$ that is homogeneous for $\mathcal{Q}$ is a finite union of sets that are canonical for $\mathcal{P}$.

Keywords: Ramsey theorem, canonical Ramsey theorem, homogeneous set, canonical set, ultrafilter, Ramsey ultrafilter, Rudin–Keisler order, ultrafilter extension.

UDC: 519.15

Presented: A. L. Semenov
Received: 14.07.2023
Revised: 31.07.2023
Accepted: 07.08.2023

DOI: 10.31857/S2686954323600805


 English version:
Doklady Mathematics, 2023, 108:2, 392–401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026