RUS
ENG
Full version
JOURNALS
// Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
// Archive
Dokl. RAN. Math. Inf. Proc. Upr.,
2023
Volume 509,
Pages
8–12
(Mi danma353)
MATHEMATICS
Estimates of Alexandrov’s
$n$
-width of a compact set for some infinitely differentiable periodic functions
V. N. Belykh
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Abstract:
In this paper, we obtain two-sided estimates for the Alexandrov
$n$
-width of a compact set of infinitely differentiable periodic functions that are boundedly embedded in the space of continuous functions on the unit circle.
Keywords:
compact set,
$n$
-width, infinitely differentiable functions, Gevrey class.
UDC:
519.6
+
515.127
Presented:
V. I. Berdyshev
Received: 10.07.2022
Revised: 12.11.2022
Accepted: 21.12.2022
DOI:
10.31857/S2686954323700078
References
English version:
Doklady Mathematics, 2023,
107
:1,
4–8
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026