RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 509, Pages 8–12 (Mi danma353)

MATHEMATICS

Estimates of Alexandrov’s $n$-width of a compact set for some infinitely differentiable periodic functions

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Abstract: In this paper, we obtain two-sided estimates for the Alexandrov $n$-width of a compact set of infinitely differentiable periodic functions that are boundedly embedded in the space of continuous functions on the unit circle.

Keywords: compact set, $n$-width, infinitely differentiable functions, Gevrey class.

UDC: 519.6+515.127

Presented: V. I. Berdyshev
Received: 10.07.2022
Revised: 12.11.2022
Accepted: 21.12.2022

DOI: 10.31857/S2686954323700078


 English version:
Doklady Mathematics, 2023, 107:1, 4–8

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026