RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 505, Pages 37–41 (Mi danma274)

This article is cited in 8 papers

MATHEMATICS

Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation

Yu. A. Alkhutova, A. G. Chechkinabc

a Vladimir State University, Vladimir, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Bashkortostan, Russia

Abstract: Higher integrability of the gradient of the solution to the Zaremba problem in a bounded Lipschitz many-dimensional domain for an inhomogeneous $p$-Laplace equation is proved.

Keywords: Zaremba problem, Meyers estimates, $p$-capacity, embedding theorems, higher integrability.

UDC: 517.954, 517.982

Presented: V. V. Kozlov
Received: 16.05.2022
Revised: 10.06.2022
Accepted: 15.06.2022

DOI: 10.31857/S2686954322040026


 English version:
Doklady Mathematics, 2022, 106:1, 243–246

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026