Abstract:
For systems of nonlinear equations, we propose a new version of the Gauss–Newton method based on the idea of using an upper bound for the residual norm of the system and a quadratic regularization term. The global convergence of the method is proved. Under natural assumptions, global linear convergence is established. The method uses an adaptive strategy to choose hyperparameters of a local model, thus forming a flexible and convenient algorithm that can be implemented using standard convex optimization techniques.