Abstract:
A system of reaction–diffusion equations in a perforated domain with rapidly oscillating terms in the equation and in the boundary conditions is studied. A nonlinear function in the equations may not satisfy the Lipschitz condition and, hence, the uniqueness theorem for the corresponding initial–boundary value problem for the considered system of reaction–diffusion equations may not be satisfied. It is proved that the trajectory attractors of this system weakly converge in the corresponding topology to the trajectory attractors of the homogenized reaction–diffusion system with a “strange term” (potential).