Abstract:
It has been known for more than a decade that, if a self-similar arc $\gamma$ can be shifted along itself by similarity maps that are arbitrarily close to identity, then $\gamma$ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.