RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 497, Pages 3–6 (Mi danma161)

This article is cited in 19 papers

MATHEMATICS

Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation

Yu. A. Alkhutova, G. A. Chechkinbcd

a Vladimir State University, Vladimir, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy of Science, Ufa, Bashkortostan, Russia
d Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract: An estimate is obtained for the increased integrability of the gradient of the solution to the Zaremba problem in a bounded plane domain with a Lipschitz boundary and rapidly alternating Dirichlet and Neumann boundary conditions, with an increased integrability exponent independent of the frequency of the boundary condition change.

Keywords: Meyers estimates, embedding theorems, rapidly changing type of boundary conditions.

UDC: 517.954; 517.982

Presented: V. V. Kozlov
Received: 18.02.2021
Revised: 18.02.2021
Accepted: 24.02.2021

DOI: 10.31857/S2686954321020028


 English version:
Doklady Mathematics, 2021, 103:2, 69–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026