RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 56–58 (Mi danma154)

This article is cited in 4 papers

MATHEMATICS

Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces

A. M. Savchuk, I. V. Sadovnichaya

Lomonosov Moscow State University, Moscow, Russian Federation

Abstract: We study the equiconvergence of spectral decompositions for two Sturm–Liouville operators on the interval $[0,\pi]$ generated by the differential expressions $l_1(y)=-y''+q_1(x)y$ and $l_2=-y''+q_2(x)y$ and the same Birkhoff-regular boundary conditions. The potentials are assumed to be singular in the sense that $q_j(x)=u'_j(x)$, $u_i\in L_\kappa[0,\pi]$ for some $\kappa\in[2,\infty]$ (here, the derivatives are understood in the sense of distributions). It is proved that the equiconvergence in the metric of $L_\nu(0,\pi]$ holds for any function $f\in L_\mu[0,\pi]$ if $\dfrac1\kappa+\dfrac1\mu+\dfrac1\nu\leq1$, $\mu,\nu\in[1,\infty]$, except for the case $\kappa=\nu=\infty$, $\mu=1$.

Keywords: Sturm–Liouville operator, distributional potentials, equiconvergence of spectral decompositions.

UDC: 517.984.52

Presented: B. S. Kashin
Received: 18.12.2020
Revised: 28.12.2020
Accepted: 29.12.2020

DOI: 10.31857/S2686954321010112


 English version:
Doklady Mathematics, 2021, 103:1, 47–49

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026