RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 21–25 (Mi danma147)

This article is cited in 1 paper

MATHEMATICS

Continuous mean periodic extension of functions from an interval

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, Donetsk, Ukraine

Abstract: We study the following version of the mean periodic extension problem.
(i) Suppose that $T\in\mathscr{E}'(\mathbb{R}^n)$, $n\ge2$, and $E$ is a nonempty closed subset of $\mathbb{R}^n$. What conditions guarantee that, for a function $f\in C(E)$, there is a function $F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$ such that $f*T=0$ in $\mathbb{R}^n$?
(ii) If such an extension F exists, then estimate the growth of F at infinity. We present a solution of this problem for a broad class of distributions $T$ in the case when $e$ is an interval in $\mathbb{R}^n$.

Keywords: convolution equations, mean periodicity, spherical transform, quasi-analyticity.

UDC: 517.444

Presented: S. V. Konyagin
Received: 09.01.2021
Revised: 09.01.2021
Accepted: 25.01.2021

DOI: 10.31857/S2686954321010185


 English version:
Doklady Mathematics, 2021, 103:1, 14–18

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026