RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2018 Volume 25, Issue 4, Pages 131–148 (Mi da913)

Approximability of the problem of finding a vector subset with the longest sum

V. V. Shenmaier

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: We answer the question of existence of polynomial-time constant-factor approximation algorithms for the space of nonfixed dimension. We prove that, in Euclidean space the problem is solvable in polynomial time with accuracy $\sqrt\alpha$, where $\alpha=2/\pi$, and if $\mathrm P\neq\mathrm{NP}$ then there are no polynomial algorithms with better accuracy. It is shown that, in the case of the $\ell_p$ spaces, the problem is APX-complete if $p\in[1,2]$ and not approximable with constant accuracy if $\mathrm P\neq\mathrm{NP}$ and $p\in(2,\infty)$. Tab. 1, bibliogr. 21.

Keywords: sum vector, search for a vector subset, approximation algorithm, inapproximability bound.

UDC: 519.16

Received: 11.04.2018
Revised: 13.07.2018

DOI: 10.17377/daio.2018.25.618


 English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 749–758

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026