RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2016 Volume 23, Issue 1, Pages 51–64 (Mi da838)

This article is cited in 7 papers

On locally balanced Gray codes

I. S. Bykov

Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: We consider locally balanced Gray codes. We say that a Gray code is locally balanced if each “short” subword of transition sequence contains all letters of the set $\{1,2,\dots,n\}$. The minimal length of such subwords is called the window width of the code. We show that for each $n\ge3$ there exists a Gray code with window width not greater than $n+3\lfloor\log n\rfloor$. Tab. 3, bibliogr. 10.

Keywords: Gray code, Hamilton cycle, $n$-cube, window width code.

UDC: 519.95

Received: 09.06.2015
Revised: 17.08.2015

DOI: 10.17377/daio.2016.23.497


 English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 78–85

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026